Latent Feature Group Learning for High-Dimensional Data Clustering

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection for Clustering on High Dimensional Data

This paper addresses the problem of feature selection for the high dimensional data clustering. This is a difficult problem because the ground truth class labels that can guide the selection are unavailable in clustering. Besides, the data may have a large number of features and the irrelevant ones can ruin the clustering. In this paper, we propose a novel feature weighting scheme for a kernel ...

متن کامل

A feature group weighting method for subspace clustering of high-dimensional data

This paper proposes a new method to weight subspaces in feature groups and individual features for clustering high-dimensional data. In this method, the features of high-dimensional data are divided into feature groups, based on their natural characteristics. Two types of weights are introduced to the clustering process to simultaneously identify the importance of feature groups and individual ...

متن کامل

Feature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach

Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...

متن کامل

Feature Selection For High-Dimensional Clustering

We present a nonparametric method for selecting informative features in high-dimensional clustering problems. We start with a screening step that uses a test for multimodality. Then we apply kernel density estimation and mode clustering to the selected features. The output of the method consists of a list of relevant features, and cluster assignments. We provide explicit bounds on the error rat...

متن کامل

High Dimensional Data Clustering Using Fast Cluster Based Feature Selection

Feature selection involves identifying a subset of the most useful features that produces compatible results as the original entire set of features. A feature selection algorithm may be evaluated from both the efficiency and effectiveness points of view. While the efficiency concerns the time required to find a subset of features, the effectiveness is related to the quality of the subset of fea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information

سال: 2019

ISSN: 2078-2489

DOI: 10.3390/info10060208